Species | Potential target | Raw | Global | Species |
---|---|---|---|---|
Schistosoma mansoni | hypothetical protein | 0.0082 | 0.8486 | 0.8486 |
Onchocerca volvulus | 0.0082 | 0.8486 | 1 | |
Echinococcus multilocularis | SWI:SNF matrix associated | 0.0082 | 0.8486 | 0.8486 |
Schistosoma mansoni | hypothetical protein | 0.0082 | 0.8486 | 0.8486 |
Echinococcus multilocularis | SWI:SNF matrix associated | 0.0082 | 0.8486 | 0.8486 |
Echinococcus granulosus | SWI:SNF matrix associated | 0.0082 | 0.8486 | 0.8486 |
Echinococcus granulosus | Upstream activation factor subunit UAF30 | 0.0082 | 0.8486 | 0.8486 |
Chlamydia trachomatis | DNA topoisomerase I | 0.0082 | 0.8486 | 0.5 |
Loa Loa (eye worm) | SWIB/MDM2 domain-containing protein | 0.0082 | 0.8486 | 0.8486 |
Brugia malayi | brahma associated protein 60 kDa | 0.0082 | 0.8486 | 0.8486 |
Echinococcus multilocularis | SWI:SNF matrix associated | 0.0082 | 0.8486 | 0.8486 |
Loa Loa (eye worm) | brahma associated protein | 0.0082 | 0.8486 | 0.8486 |
Brugia malayi | SWIB/MDM2 domain containing protein | 0.0082 | 0.8486 | 0.8486 |
Plasmodium falciparum | SWIB/MDM2 domain-containing protein | 0.0082 | 0.8486 | 0.8486 |
Chlamydia trachomatis | SWIB complex protein | 0.0082 | 0.8486 | 0.5 |
Schistosoma mansoni | brg-1 associated factor | 0.0082 | 0.8486 | 0.8486 |
Schistosoma mansoni | hypothetical protein | 0.0082 | 0.8486 | 0.8486 |
Toxoplasma gondii | DNA topoisomerase domain-containing protein | 0.0082 | 0.8486 | 0.8486 |
Echinococcus multilocularis | Upstream activation factor subunit UAF30 | 0.0082 | 0.8486 | 0.8486 |
Loa Loa (eye worm) | hypothetical protein | 0.009 | 0.9843 | 0.9843 |
Brugia malayi | brahma associated protein 60 kDa | 0.0082 | 0.8486 | 0.8486 |
Plasmodium falciparum | SWIB/MDM2 domain-containing protein | 0.0082 | 0.8486 | 0.8486 |
Toxoplasma gondii | SWIB/MDM2 domain-containing protein | 0.0082 | 0.8486 | 0.8486 |
Activity type | Activity value | Assay description | Source | Reference |
---|---|---|---|---|
GI50 (functional) | -4 | PUBCHEM_BIOASSAY: NCI human tumor cell line growth inhibition assay. Data for the MDA-N Breast cell line. (Class of assay: confirmatory) | ChEMBL. | No reference |
GI50 (functional) | -4 | PUBCHEM_BIOASSAY: NCI human tumor cell line growth inhibition assay. Data for the SN12C Renal cell line. (Class of assay: confirmatory) | ChEMBL. | No reference |
GI50 (functional) | -4 | PUBCHEM_BIOASSAY: NCI human tumor cell line growth inhibition assay. Data for the ACHN Renal cell line. (Class of assay: confirmatory) | ChEMBL. | No reference |
GI50 (functional) | -4 | PUBCHEM_BIOASSAY: NCI human tumor cell line growth inhibition assay. Data for the NCI-H23 Non-Small Cell Lung cell line. (Class of assay: confirmatory) | ChEMBL. | No reference |
GI50 (functional) | -4 | PUBCHEM_BIOASSAY: NCI human tumor cell line growth inhibition assay. Data for the UO-31 Renal cell line. (Class of assay: confirmatory) | ChEMBL. | No reference |
GI50 (functional) | -4 | PUBCHEM_BIOASSAY: NCI human tumor cell line growth inhibition assay. Data for the HOP-92 Non-Small Cell Lung cell line. (Class of assay: confirmatory) | ChEMBL. | No reference |
GI50 (functional) | -4 | PUBCHEM_BIOASSAY: NCI human tumor cell line growth inhibition assay. Data for the HL-60(TB) Leukemia cell line. (Class of assay: confirmatory) | ChEMBL. | No reference |
GI50 (functional) | -4 | PUBCHEM_BIOASSAY: NCI human tumor cell line growth inhibition assay. Data for the DU-145 Prostate cell line. (Class of assay: confirmatory) | ChEMBL. | No reference |
GI50 (functional) | -4 | PUBCHEM_BIOASSAY: NCI human tumor cell line growth inhibition assay. Data for the SK-MEL-5 Melanoma cell line. (Class of assay: confirmatory) | ChEMBL. | No reference |
Many chemical entities in TDR Targets come from high-throughput screenings with whole cells or tissue samples, and not all assayed compounds have been tested against a single a single target protein, probably because they get ruled out during screening process. Even if these compounds may have not been of interest in the original screening, they may come as interesting leads for other screening assays. Furthermore, we may be able to propose drug-target associations using chemical similarities and network patterns.