Species | Potential target | Raw | Global | Species |
---|---|---|---|---|
Schistosoma mansoni | hypothetical protein | 0.0097 | 1 | 1 |
Plasmodium vivax | hypothetical protein, conserved | 0.0097 | 1 | 0.5 |
Echinococcus multilocularis | SWI:SNF matrix associated | 0.0097 | 1 | 1 |
Schistosoma mansoni | hypothetical protein | 0.0097 | 1 | 1 |
Loa Loa (eye worm) | SWIB/MDM2 domain-containing protein | 0.0097 | 1 | 1 |
Echinococcus granulosus | SWI:SNF matrix associated | 0.0097 | 1 | 1 |
Onchocerca volvulus | 0.0097 | 1 | 1 | |
Echinococcus multilocularis | SWI:SNF matrix associated | 0.0097 | 1 | 1 |
Brugia malayi | SWIB/MDM2 domain containing protein | 0.0097 | 1 | 1 |
Trichomonas vaginalis | conserved hypothetical protein | 0.0097 | 1 | 0.5 |
Chlamydia trachomatis | DNA topoisomerase I | 0.0097 | 1 | 0.5 |
Echinococcus multilocularis | Upstream activation factor subunit UAF30 | 0.0097 | 1 | 1 |
Plasmodium falciparum | SWIB/MDM2 domain-containing protein | 0.0097 | 1 | 0.5 |
Chlamydia trachomatis | SWIB complex protein | 0.0097 | 1 | 0.5 |
Brugia malayi | brahma associated protein 60 kDa | 0.0097 | 1 | 1 |
Echinococcus granulosus | Upstream activation factor subunit UAF30 | 0.0097 | 1 | 1 |
Schistosoma mansoni | hypothetical protein | 0.0097 | 1 | 1 |
Schistosoma mansoni | brg-1 associated factor | 0.0097 | 1 | 1 |
Toxoplasma gondii | SWIB/MDM2 domain-containing protein | 0.0097 | 1 | 0.5 |
Echinococcus multilocularis | SWI:SNF matrix associated | 0.0097 | 1 | 1 |
Loa Loa (eye worm) | brahma associated protein | 0.0097 | 1 | 1 |
Toxoplasma gondii | DNA topoisomerase domain-containing protein | 0.0097 | 1 | 0.5 |
Plasmodium vivax | SWIB/MDM2 domain-containing protein, putative | 0.0097 | 1 | 0.5 |
Plasmodium falciparum | SWIB/MDM2 domain-containing protein | 0.0097 | 1 | 0.5 |
Many chemical entities in TDR Targets come from high-throughput screenings with whole cells or tissue samples, and not all assayed compounds have been tested against a single a single target protein, probably because they get ruled out during screening process. Even if these compounds may have not been of interest in the original screening, they may come as interesting leads for other screening assays. Furthermore, we may be able to propose drug-target associations using chemical similarities and network patterns.