pI: 9.4882 |
Length (AA): 345 |
MW (Da): 39083 |
Paralog Number:
0
Signal peptide: N | GPI Anchor: N | Predicted trans-membrane segments: 0
Targets have been classified into druggability groups (DG) according to their druggability score in network driven prioritizations. DGs range from 1 to 5; the higher the group number, the higher the chance of the target to be druggable
Modbase 3D models:
There are 4 models calculated for this protein. More info on
these models, including the
models themselves is available at:
Modbase
Target Beg | Target End | Template | Template Beg | Template End | Identity | Evalue | Model Score | MPQS | zDope |
---|---|---|---|---|---|---|---|---|---|
108 | 343 | 4efa (E) | 4 | 226 | 31.00 | 0 | 1 | 0.993058 | -0.17 |
113 | 295 | 4uos (A) | 1 | 183 | 11.00 | 0.00016 | 0.11 | 0.774535 | -1.49 |
116 | 319 | 4ilo (A) | 23 | 225 | 18.00 | 0 | 0.94 | 0.586304 | 0.49 |
125 | 341 | 4dt0 (A) | 19 | 197 | 32.00 | 0.000000014 | 1 | 0.619085 | 1.05 |
Help me make sense of these data.
A more detailed description of these scores is available at the Modbase Model Evaluation Help Pages, and in the papers referenced therein.
PDB Structures:
Upregulation Percent | Ranking | Stage | Dataset |
---|---|---|---|
Upper 80-100% percentile | VEG Tachyzoite, ME49 Tachyzoite, ME49 merozoite, ME49 Oocyst, ME49 Bradyzoite. | Gregory Hehl AB Fritz HM Sibley/Greg |
Sibley/Greg | ToxoDB |
Fritz HM | Transcriptomic analysis of toxoplasma development reveals many novel functions and structures specific to sporozoites and oocysts. |
Gregory | ToxoDB |
Hehl AB | Asexual expansion of Toxoplasma gondii merozoites is distinct from tachyzoites and entails expression of non-overlapping gene families to attach, invade, and replicate within feline enterocytes. |
Ortholog group members (OG5_127015)
Species | Accession | Gene Product |
---|---|---|
Arabidopsis thaliana | AT4G11150 | V-type proton ATPase subunit E1 |
Arabidopsis thaliana | AT1G64200 | V-type proton ATPase subunit E3 |
Arabidopsis thaliana | AT3G08560 | V-type proton ATPase subunit E2 |
Babesia bovis | BBOV_I000090 | ATP synthase subunit E containing protein |
Brugia malayi | Bm1_53000 | Vacuolar h atpase protein 8 |
Candida albicans | CaO19.10129 | vacuolar ATPase V1 domain subunit E similar to S. cerevisiae VMA4 (YOR332W) |
Candida albicans | CaO19.2598 | vacuolar ATPase V1 domain subunit E similar to S. cerevisiae VMA4 (YOR332W) |
Caenorhabditis elegans | CELE_C17H12.14 | Protein VHA-8 |
Cryptosporidium hominis | Chro.80048 | vacuolar ATP synthase subunit E |
Cryptosporidium parvum | cgd8_360 | putative vacuolar ATP synthase subunit E |
Dictyostelium discoideum | DDB_G0275701 | vacuolar H+-ATPase E subunit |
Drosophila melanogaster | Dmel_CG1088 | Vacuolar H[+]-ATPase 26kD subunit |
Echinococcus granulosus | EgrG_001118800 | Vacuolar proton pump subunit E |
Entamoeba histolytica | EHI_182560 | Vacuolar ATP synthase subunit E, putative |
Entamoeba histolytica | EHI_182550 | Vacuolar ATP synthase subunit E, putative |
Echinococcus multilocularis | EmuJ_001118800 | Vacuolar proton pump subunit E |
Giardia lamblia | GL50803_13603 | Hypothetical protein |
Homo sapiens | ENSG00000131100 | ATPase, H+ transporting, lysosomal 31kDa, V1 subunit E1 |
Homo sapiens | ENSG00000250565 | ATPase, H+ transporting, lysosomal 31kDa, V1 subunit E2 |
Leishmania braziliensis | LbrM.35.3320 | ATP synthase, putative |
Leishmania donovani | LdBPK_363250.1 | ATP synthase, putative |
Leishmania infantum | LinJ.36.3250 | ATP synthase, putative |
Leishmania major | LmjF.36.3100 | ATP synthase, putative |
Leishmania mexicana | LmxM.36.3100 | ATP synthase, putative |
Loa Loa (eye worm) | LOAG_00780 | vacuolar h ATPase 8 |
Mus musculus | ENSMUSG00000019210 | ATPase, H+ transporting, lysosomal V1 subunit E1 |
Mus musculus | ENSMUSG00000053375 | ATPase, H+ transporting, lysosomal V1 subunit E2 |
Neospora caninum | NCLIV_043880 | hypothetical protein |
Oryza sativa | 4326699 | Os01g0222500 |
Oryza sativa | 4339122 | Os05g0480700 |
Oryza sativa | 4327166 | Os01g0659200 |
Plasmodium berghei | PBANKA_0835300 | V-type proton ATPase subunit E, putative |
Plasmodium falciparum | PF3D7_0934500 | V-type proton ATPase subunit E, putative |
Plasmodium knowlesi | PKNH_0733200 | V-type proton ATPase subunit E, putative |
Plasmodium vivax | PVX_086990 | vacuolar ATP synthase subunit e, putative |
Plasmodium yoelii | PY06101 | ATP synthase subunit |
Saccharomyces cerevisiae | YOR332W | H(+)-transporting V1 sector ATPase subunit E |
Schistosoma japonicum | Sjp_0209790 | ko:K02150 V-type H+-transporting ATPase subunit E, putative |
Schistosoma mansoni | Smp_085520 | vacuolar ATP synthase subunit E |
Schmidtea mediterranea | mk4.002005.01 | |
Schmidtea mediterranea | mk4.001357.03 | V-type proton ATPase subunit E |
Trypanosoma brucei gambiense | Tbg972.11.10570 | ATP synthase, putative |
Trypanosoma brucei | Tb927.11.9420 | ATP synthase, putative |
Trypanosoma congolense | TcIL3000.11.9840 | ATP synthase, putative |
Trypanosoma cruzi | TcCLB.511589.10 | ATP synthase, putative |
Trypanosoma cruzi | TcCLB.508851.59 | ATP synthase, putative |
Toxoplasma gondii | TGME49_305290 | vacuolar atp synthase subunit e, putative |
Theileria parva | TP03_0853 | vacuolar ATP synthase subunit E, putative |
Theileria parva | TP03_0247 | hypothetical protein |
Trichomonas vaginalis | TVAG_360810 | vacuolar ATP synthase subunit E, putative |
Trichomonas vaginalis | TVAG_448420 | vacuolar ATP synthase subunit E, putative |
Trichomonas vaginalis | TVAG_021890 | vacuolar ATP synthase subunit E, putative |
Trichomonas vaginalis | TVAG_099990 | vacuolar ATP synthase subunit E, putative |
Gene/Ortholog | Organism | Phenotype | Source Study |
---|---|---|---|
Tb11.01.1190 | Trypanosoma brucei | no significant loss or gain of fitness in bloodstream forms (3 days) | alsford |
Tb11.01.1190 | Trypanosoma brucei | significant loss of fitness in bloodstream forms (6 days) | alsford |
Tb11.01.1190 | Trypanosoma brucei | significant loss of fitness in procyclic forms | alsford |
Tb11.01.1190 | Trypanosoma brucei | no significant loss or gain of fitness in differentiation of procyclic to bloodstream forms | alsford |
CELE_C17H12.14 | Caenorhabditis elegans | embryonic lethal | wormbase |
CELE_C17H12.14 | Caenorhabditis elegans | larval arrest | wormbase |
CELE_C17H12.14 | Caenorhabditis elegans | larval lethal | wormbase |
CELE_C17H12.14 | Caenorhabditis elegans | slow growth | wormbase |
CELE_C17H12.14 | Caenorhabditis elegans | sterile | wormbase |
PBANKA_0835300 | Plasmodium berghei | Essential | plasmo |
TGME49_305290 this record | Toxoplasma gondii | Essentiality uncertain | sidik |
wormbase | C. elegans RNAi experiments | WormBase web site, http://www.wormbase.org, release WS170 |
gerdes | Experimental determination and system-level analysis of essential genes in E. coli MG1655 | Gerdes et al., J Bacteriol. 2003 185:5673-84 |
yeastgenome | Systematic deletion of yeast genes | Saccharomyces Genome Database |
shigen | Profiling of E. coli Chromosome (PEC) | National Institute of Genetics, Japan |
blattner | Systematic mutagenesis of the E. coli (MG1655) genome | J Bacteriol 2004, 186:4921-4930 |
nmpdr | Genome-scale essentiality datasets from published studies (M. tuberculosis) | National Microbial Pathogen Data Resource |
neb | C. elegans RNAi phenotypes | Data obtained from Wormbase WS150, curated by K. Chaudary and T. Carlow, New England Biolabs |
keio | Systematic single-gene knock-out mutants of E. coli K12 | The Keio Collection |
alsford | High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome | Genome Res 2011, 21:915-924 |
In TDR Targets, information about phenotypes that are caused by drugs, or by genetic manipulation of cells (e.g. gene knockouts or knockdowns) is manually curated from the literature. These descriptions help to describe the potential of the target for drug development. If no information is available for this gene or if the information is incomplete, this may mean that i) the papers containing this information either appeared after the curation effort for this organism was carried out or they were inadvertently missed by curators; or that ii) the curation effort for this organism has not yet started.
In any case, if you have information about papers containing relevant validation data for this target, please contact us.
4 literature references were collected for this gene.